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Colosimo, A., A. Giuliani, A. M. Mancini, G. Piccirillo,
and V. Marigliano. Estimating a cardiac age by means of
heart rate variability. Am. J. Physiol. 273 (Heart Circ. Physiol.
42): H1841–H1847, 1997.—A data set of R-R intervals re-
corded for at least 15 min in 141 healthy individuals of
different ages and under two different conditions (‘‘resting’’
and ‘‘tilted’’ states) has been considered. The data have been
subjected to spectral analysis by fast Fourier transform
methods and considered in view of the possibility to work out
a model in which the chronological and cardiac age could be
compared. Understanding the results was greatly facilitated
by 1) working out a number of derived variables from the
original ones to highlight the presence of small but conceptu-
ally important variability factors; 2) extraction of the princi-
pal components from the original as well as from the derived
variables to exclude redundancies and correlation effects; and
3) automatic clustering of the subjects in age classes, which
allowed removal of individual variability within each class.
The main conclusion is that, within the examined individu-
als, cardiac and chronological ages do not match for ages
higher than ,50 years; this could reflect the presence of
subtle (and difficult-to-envisage) biases in the data analysis
or a real discrepancy. The latter hypothesis should be con-
firmed by similar observations in different systemic contexts.
The use of a simple equation relating chronological and
cardiac age, derived from a careful regression analysis on our
data set and of general use for screening purposes, is demon-
strated.

aging; power spectral analysis; statistical analysis; head-up
tilt

IT HAS BEEN RECENTLY clarified that human heart rate
variability (HRV) is distributed according to a broad-
band power spectrum that follows a hyperbolic trend
called ‘‘1/f noise’’ (9, 11). Such behavior produces a
spectral power distribution inversely correlated to the
frequency (4) which is typical of the fractal dynamics or,
in more general terms, of the important family of
physical phenomena called ‘‘random walks,’’ whose
best-known member is the Brownian motion. In particu-
lar, the heart rate seems to show a beat-to-beat regula-
tion of the constrained random walk type (3) to which
the sympathetic and parasympathetic modulatory influ-
ences are probably superimposed.

Even though, from a quantitative point of view, the
frequency regions surely assigned to sympathetic and
parasympathetic influences [i.e., high frequency (HF)
and low frequency (LF)] probably play a minor role in
the HRV dynamics (11), the precise identification of
such a role entails a relevant diagnostic importance
(10). Because of the obvious correlations existing among
quantities forced to assume a fixed total value, such as
the different bands in a power spectrum, the applica-

tion of quite sophisticated statistical methods able to
discriminate among different contributions to the HRV
becomes useful. This allows us, in particular, to single
out the various effects of aging on the heartbeat dynam-
ics and, in conjunction with an appropriate database, to
work out a reliable estimator of the cardiac age.

In the next sections, the approach followed in the
analysis of a large data set will be described in depth
with the aim to identify the variables significantly
correlated with aging among those considered in our
database. Subsequently, a model that describes the
cardiac age and is directly derived from the above-
mentioned analysis will be discussed and shown to be
fairly accurate, given the intrinsic high variability of
clinical data.

METHODS

Data Collection Protocol

Of the 455 subjects initially enrolled for this study, 141
completed the study protocol. The more important causes of
exclusion were a history or actual evidence of cardiovascular,
respiratory, renal (presence of proteinuria or creatinine
.132.6 µmol/l), liver, or gastrointestinal disease. Other exclu-
sion criteria were diastolic blood pressure .90 mmHg or
systolic blood pressure .150 mmHg, body mass index .26
kg/m2, smoking (.5 cigarettes/day), diabetes (presence of
glycosuria or fasting glycemia .6.6 mmol/l or .6.1 mmol/l at
2 h after glucose loading), plasma cholesterol .5.7 mmol/l,
arrhythmias or conduction abnormalities, echocardiographic
evidence of wall motion abnormalities or valvular disease, or
ultrasound evidence of carotid stenosis of importance. In
particular, 45 subjects were excluded because presyncopal
symptoms developed during the head-up tilt test (see below).

Heart rate recordings for spectral analysis in all subjects
took place according to the following protocol (7). At 8:30 AM,
in a quiet and comfortable environment (24°C), the subjects
rested supine for at least 30 min before undergoing a 15-min
electrocardiographic recording (resting state). The same sub-
jects underwent, successively, head-upright tilt testing, a
passive orthostatic maneuver obtained with a motorized tilt
table. After 15 min in an upright (90°) position, the subjects
underwent a second 512-beat (,5 min) electrocardiographic
recording (tilted state). Transition from 0° to 90° took ,15 s.
Blood pressures were recorded before tilting and at 30-s
intervals during tilt. If hypotension (systolic arterial pressure
drops of 20 mmHg) or symptoms indicating the onset of
syncope, nausea, or gastric pirosys developed during tilt,
testing was stopped and the subject was excluded from the
study.

Off-Line HRV Analysis

Figure 1 reports the age distribution of the subjects ana-
lyzed in the present work. [It is instructive to compare this
information with the results of clustering of the same data
reported in the RESULTS (Table 4).] The fast Fourier transform
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was used to compute power spectral densities from the
electrocardiographic recordings (4–6). Tracings were ana-
lyzed with software running on a Compaq computer with a
486 DX2 microprocessor. Electrocardiographic signals were
digitized, stored on a hard disk, and sampled at a rate of 500
Hz, with 12 precision bits. The QRS complex (lead II) was
automatically recognized as a classic derivative-threshold
algorithm. Each QRS complex and each trigger point were also
subsequently checked by an expert cardiologist. Adjacent
complexes were used to correct ectopic beats for linear
interpolation, and electrocardiographic tracings with .1%
premature beats were eliminated from the analysis. The
length of stationary segments of electrocardiographic record-
ings was 512 beats. Signals were transformed to time series of
instantaneous heart rate (beats/min). The sampling rate of
these series was equalized to correspond to one sample per
second. Spectral power of heart rate was expressed in recipro-
cal squared seconds, because the HRV expressed in millisec-
onds shows a skewed distribution.

The analyzed spectral components (10) included total
power or spectral density (TP); HF power, from 0.16 to 0.40
Hz; LF power, from 0.04 to 0.15 Hz; very low frequency (VLF)
power, ,0.04 Hz; and LF/HF, the ratio of LF power to HF
power.

The software applications for data acquisition and storage
and for the spectral analysis were designed and produced by
our research group. The statistical analyses were carried out
almost exclusively by means of the SAS package (6.0 release)
for the IBM PC.

Data Analysis: General Strategy

Some considerations indicate that a fraction of the whole
information made available by our experimental setup might
be hidden at the observation scale used (see the introduction).
Thus three sets of derived variables have been introduced
with the aim to amplify the quantitatively minor but possibly
biologically relevant components. The variables characteriz-
ing each set and their definitions in terms of the original
variables are reported in Table 1.

The first set of derived variables (derived set I) is obtained
by using as new variables the fraction of the total power
absorbed by each band; this eliminates the major source of
variability among the various bands in a power spectrum, i.e.,

the absolute absorbed power, and underlines the interindivid-
ual variability in terms of spectral shapes.

The second transformation of variables (derived set II) has
been worked out to highlight the interindividual differences
in responses to the orthostatic challenge (tilt-up) and is
defined by the resting-tilted difference.

The last set of derived variables (derived set III) is gener-
ated by transforming the variables of the derived set II into
their fractional counterparts. As previously discussed, such
an operation has the virtue of stressing the possible interindi-
vidual differences in the shape of the resting-tilted differen-
tial spectra.

Principal Component Analysis

By finding the principal components, a data field can be
represented in terms of new variables corresponding to the
directions of maximal elongation of the data cloud in the
space of the original variables (1). It is worth noting that,
because they are reciprocally orthogonal, i.e., uncorrelated,
and have means equal to 0 and standard deviations equal to
1, the principal components of a data field allow a fair
estimate of the size of the possible differences among groups
of observations. Moreover, the fraction of the total variability
explained by each principal component provides a good estimate
of its relative importance in representing the data field.

The principal components correspond to the independent
concepts underlying a given data set, and their meanings can
be rationalized using the so-called ‘‘factor loadings,’’ i.e., the
correlation coefficients with the original variables (1, 2). In

Fig. 1. Chronological age distribution of 141 healthy subjects. Spac-
ing between bars was chosen to obtain an approximately uniform
spacing while still keeping boundaries between clusters visible.

Table 1. Original and derived variables

Resting
State

Tilted
State

Difference
Between States

Original variables

TP TP(R) TP(T)
VLF-band power VLF(R) VLF(T)
LF-band power LF(R) LF(T)
HF-band power HF(R) HF(T)
LF/HF LF/HF(R) LF/HF(T)

Derived variables

Set I: Fractional power
of various bands

VLF-band % Total
Power VLF(R)% VLF(T)%

LF-band % Total
Power LF(R)% LF(T)%

HF-band % Total
Power HF(R)% HF(T)%

Set II: Differential
power between
states

TP(R)2TP(T) difTP
VLF(R)2VLF(T) difVLF
LF(R)2LF(T) difLF
HF(R)2HF(T) difHF
LF/HF(R)2LF/

HF(T) dif(LF/HF)
Set III: Fractional dif-

ferential power
between states

VLF(R)%2VLF(T)% difVLF%
LF(R)%2LF(T)% difLF%
HF(R)%2HF(T)% difHF%

For frequency ranges associated with very low frequency (VLF),
low-frequency (LF), and high-frequency (HF) bands, see METHODS. TP,
total power; R, resting state; T, tilted state; dif, differential.
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the present work, the principal component analysis (PCA)
has been carried out on the original as well as on the derived
variables, thus allowing the full exploitation of the available
information embodied in the HRV from different and comple-
mentary points of view.

Cluster Analysis

The correlation between the functional cardiac parameters
and age was investigated by means of the Pearson’s correla-
tion coefficient (r), i.e., a model based on linear regression
between continuous variables. This is in spite of the fact that
aging-linked biological observations are generally classified
in terms of discrete structures; in everyday language we
speak of young, middle-aged, and old individuals, and in even
more scientifically refined contexts, 34-, 36-, and 38-yr-old
healthy individuals surely would be included into the very
same age group.

The present general availability of excellent algorithms for
automatic classification allowed us to make use of the discrete
character of age by rearranging our database in terms of a
minimum number of internally homogeneous and externally
well-separated age classes. An important advantage of this
strategy lies in the fact that, taking the center mass of the
classes as a reference, the individual variability within
classes almost disappears, with the effect of a powerful and
efficient noise filtering.

The chosen clustering algorithm was the ‘‘k-means’’ (1), a
nonhierarchical procedure to identify classes without using
any a priori knowledge. Clusters come from the structural
characteristics of the data set, maximizing the interclass
variance and minimizing the intraclass variance (1). In the
case of n units described by m variables, this is obtained by
the following steps: 1) a nontrivial number of classes, k, is
defined, with k , n , 1; 2) k aggregation points in an
m-dimensional space are arbitrarily chosen; 3) each of the n
units are assigned to the nearest aggregation point; 4) a new
set of aggregation points are reckoned as barycenters of the
classes of data; and 5) steps are repeated from step 3 until no
class change occurs for any unit.

Evaluation of a Cardiac Age from HRV Data

To estimate the cardiac age of a single subject, i.e., the best
guess of the real age from a cardiovascular perspective, a
multiple regression analysis was used in which the depen-
dent variable was the chronological age and the independent
variables (regressors) were the principal components that
were extracted from the HRV database (original and derived
sets) and were highly correlated with age; the regressions
were computed over the 141 individuals included in our data
set. Because of the properties of the principal components
(see Principal Component Analysis), this allows us to exclude
any intrinsic or randomly arising, spurious correlations be-
tween redundant variables.

An extra advantage of the latter choice lies in the fact that
the principal components, once their physiological meanings
are identified, represent single and independent contribu-
tions to the observed complex phenomena. It should be
remembered, however, that the chosen definition of cardiac
age is only endowed with an operational meaning and does
not reflect any deep physiological thinking.

RESULTS

Original Variables and PCA Analysis

Table 2 reports the factor loadings between the first
four principal components extracted from the original

variables and the variables as such (rows). [The order-
ing of principal components (first, second, etc.) reflects
their significance in emerging from the background
noise, as also indicated by the decreasing fractions of
the total variability explained.]

The main contribution to the first component
(PC1orig), by far the most important in terms of the
fraction of total variability explained (50%), is provided
by the TP for both the resting and the tilted states;
moreover, all the original variables are positively corre-
lated with PC1orig. This points to the identification of
PC1orig with a size-type component (2), which means
that 1) the absolute size of the power spectra (TP)
represents the most conspicuous source of interindivid-
ual variability and 2) PC1orig includes the interindivid-
ual variability embodied in the different absolute sizes
of the power spectra independently of their specific
shapes.

The second principal component (PC2orig), different
from the first one, is characterized by the opposite sign
of its correlation with the resting and tilted variables.
This means that PC2orig is linked to the shape of the
relationships between the variables relative to the two
states (2), as confirmed by the high and negative
correlation with the first component of the derived
variables for set III (see Set III), describing the resting-
tilted difference (Pearson’s r 5 20.70, P , 0.001).

According to the above-mentioned criteria, both
PC3orig and PC4orig are also shape dependent; in
particular, PC3orig is linked to LF/HF in the resting
state, whereas PC4orig is related to the variability in
the response to the tilting, as shown by the opposite
correlation with LF/HF in the resting and tilted states.

Only PC1orig shows a significant negative correla-
tion with age (last row of Table 1); this confirms the
side-by-side presence of a clear effect of aging on the

Table 2. Principal component analysis
over original variables

PC1orig PC2orig PC3orig PC4orig

TP(R) 0.747* 20.521* 0.258 0.060
VLF(R) 0.707* 20.447* 0.354 0.071
LF(R) 0.828* 20.186 0.228 0.066
HF(R) 0.737* 20.413 20.188 20.092
LF/HF(R) 0.024 0.403 0.695* 0.540*

TP(T) 0.886* 0.413* 20.185 0.003
VLF(T) 0.628* 0.468* 20.196 0.176
LF(T) 0.873* 0.330 20.096 20.134
HF(T) 0.840* 0.133 20.356 0.089
LF/HF(T) 0.259 0.363 0.617* 20.640*

%Explained variability 50.0 14.9 13.5 7.8
Age correlation 20.52* 20.04 20.04 0.19

Main body refers to factor loadings (see text for explanations)
between principal components (PC1orig–PC4orig) and original vari-
ables with suffixes (R) and (T) indicating resting and tilted states,
respectively. Asterisk indicates elements relevant in interpretation of
each component because of the high absolute value of the correlation
with corresponding variable. %Explained variability is expressed as
fraction of total variability explained by each component, and age
correlation is expressed by Pearson’s correlation coefficient. Asterisk
for age correlation indicates a statistically significant relationship of
component with age considered as an external variable.
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decreasing variability of heart rate as well as of other
aging-independent factors influencing its regulation.

Derived Variables and PCA Analysis

The results obtained by extracting the principal
components from the three sets of derived variables
described in the METHODS are summarized in Table 3.
For the sake of clarity, these results will be commented
on with reference to each single set.

Set I. (These variables represent the fraction of TP
included in each spectral band.) None of the principal
components extracted from this data set can be exclu-
sively of the size type, because the fractional power of
each band is calculated for the resting and tilted states
separately, with respect to a TP specific for each
individual. In fact, because the fractional power vari-
ables implied a fixed value (100%) for each individual,
the possibility of finding all correlations to be positive is
ruled out. Thus the first principal component for set I
(PC1%) reflects the most important source of interindi-
vidual variability (40%) based on the spectral shapes.
As in the case of the original variables, however, here
too the first principal component refers to some com-
mon feature of the resting and tilted states, which is
the relative importance of the VLF bands compared
with the others. As a matter of fact, the VLF bands,
because of the 1/f character of the power spectra,
represent their most relevant fractions. In synthesis,
PC1% measures the relative importance of nonoscilla-
tory (VLF) and true oscillatory (HF, LF) (3, 8, 11)
regulation of the heart rate. It is worth noting the

significant correlation between PC1% and age, which
indicates a more marked decrease of the oscillatory
regulation with age compared with the nonoscillatory
component (3, 11, 12).

The second component of this set, PC2%, is linked to
the relative importance of HF in the resting state
[HF(R)%] and LF in the tilted state [LF(T)%]. Because
HF(R)% and LF(T)% refer to different states, PC2%
deals with the interindividual differences in the shape
changes that arise in the spectra while shifting from
the resting to the tilted state. PC3% is also linked to the
different redistribution of the power in the two states,
as indicated by the opposite pattern of signs in the
factor loadings between PC3% and the original vari-
ables from the resting and tilted states. This interpreta-
tion is confirmed by the high negative correlation
between PC3% and the first principal component from
the third set of derived variables (Pearson’s r 5 20.93,
P , 0.0001).

Table 3. Principal component analysis
over derived variables

Set I PC1% PC2% PC3%

VLF(R)% 20.827* 20.231 20.427
LF(R)% 0.510* 20.371 0.550*
HF(R)% 0.546* 0.635* 0.242
VLF(T)% 20.797* 0.183 0.556*
LF(T)% 0.631* 20.652* 20.269
HF(T)% 0.314 0.667* 20.488*

%Explained variability 39.6 25.0 19.4
Age correlation 20.50* 0.38* 20.08

Set II PC1dif PC2dif PC3dif

difTP 0.978* 0.002 20.128
difVLF 0.744* 20.149 20.636*
difLF 0.883* 0.199 20.274
difHF 0.741* 20.358 20.475*
difLF/HF 0.209 0.957* 20.201

%Explained variability 57.6 22.1 14.4
Age correlation 0.27* 0.34* 20.11

Set III PC1dif% PC2dif%

difVLF% 20.985* 20.025
difLF% 0.716* 20.684*
difHF% 0.577* 0.808*

%Explained variability 60.5 37.4
Age correlation 0.08 20.46*

For each set of derived variables (sets I–III), factor loadings are
associated with principal components (PC1–PC3) and variables. For
definitions of asterisks, see Table 2.

Fig. 2. Chronological and cardiac ages. A: scatter plot of chronologi-
cal vs. cardiac age (estimated using Eq. 1). Points correspond to
individuals. B: relationship between chronological and cardiac age at
levels of clusters. Each point corresponds to a cluster. Saturation
behavior of cardiac with respect to chronological age may be evi-
denced by comparison with identity line (diagonal). Uncertainty
levels on points are expressed in terms of SE.
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Finally, because the principal components are lin-
early uncorrelated among each other, the significant
correlation of both PC1% and PC2% with age indicates
the presence of two different and linearly irreducible
factors in the overall influence of aging on the cardiovas-
cular functions.

Set II. (These variables represent the differences
between homologous bands in the resting and tilted
states.) What is emerging here, again, is the size nature
of the first principal component (PC1dif), which deals
with the difference in the TP between the resting and
tilted states (difTP) as indicated by the factor loading
(0.98) with difTP. In contrast, the second principal

component (PC2dif) is of the shape type and indicates
the presence of specific nervous reflexes, because its
most important factor loading is with the difference in
LF/HF between the resting and tilted states.

Set III. (These variables represent the fractional
contribution of the difference between corresponding
bands to difTP.) The first principal component of this
set (PC1dif%) is linked to the balance between the
nonoscillatory (VLF) and the oscillatory (LF, HF) regu-
lations and practically coincides with the fractional
difference between the resting and tilted states in
terms of VLF (loading 5 20.985). PC2dif% has almost
nothing to do with VLF, whereas it is strongly related to
the different individual responses to the tilted state as
expressed by both LF and HF bands.

The behavior of the second principal component has a
clear interpretation in terms of sympathetic-parasym-
pathetic balance and, in this set, is the only component
to be significantly modified by aging.

Setup of a Cardiac Age Estimator

The observed significant correlations between the
HRV descriptors and age allowed us to envisage a
general empirical index of the cardiac age by collecting
in a single score all the age-linked components. Such a
score was built by letting the age act as the dependent
variable and using as regressors the components signifi-
cantly related to age. Application of a least-squared

Table 4. Age clustering and estimate
of cardiac age from database

n

Chronological Age Cardiac
Age,

mean6SDMinimum Maximum Mean6SD

Cluster A 18 19 29 25.763.5 38.2612.7
Cluster B 34 30 45 37.065.0 45.969.8
Cluster C 41 48 63 56.864.4 56.369.4
Cluster D 29 64 78 68.963.9 65.669.5
Cluster E 19 79 91 82.363.3 65.066.7

Means 6 SD values for chronological and cardiac ages are graphi-
cally represented in Fig. 2B. Minor SD of chronological age is
explained by fact that, over this variable, age-clustering was actually
built up with declared intention to define internally homogeneous
classes.

Fig. 3. Age dependence of regressors used to estimate
cardiac age. Values of each of four regressors (A–D)
were used to estimate cardiac age (see text for details)
plotted vs. mean age of each of 5 clusters. A: PC1orig,
first principal component of original variables. B: PC1%,
first principal component of fraction of total power in
each spectral band. C: PC2%, second principal compo-
nent of fraction of total power in each spectral band. D:
PC2dif%, second principal component of fractional con-
tribution of difference between corresponding spectral
bands to total power differences between resting and
tilted states. Lines joining points have been added for
clarity, and uncertainty levels are expressed as in
Fig. 2B.
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regression generated the following equation

cardiac age 5 53.96 2 4.51 PC1orig

2 6.19 PC1% 1 5.06 PC2% 2 4.21 PC2dif%
(1)

which is endowed with a very high statistical signifi-
cance (r 5 0.71; P , 0.0001). This means that a highly
significant agreement exists between the chronological
age of the patients and the age estimated by the HRV
analysis (Fig.2A).

Clustering of Ages

The application of the k-means algorithm to the age
distribution of the population under study produces a
five-class solution (Table 4), accounting for 95% of the
total observed variability. This means that, in consider-
ing the age classes, we retain the great part of the
information embodied in the data with respect to the
age distribution. The cardiac age estimator (see Setup
of a Cardiac Age Estimator) allows the description of
the age classes in terms of cardiac age by simply
computing Eq. 1 for each element in a class, followed by
averaging. Table 4 reports the chronological and car-
diac ages relative to the classes. It is worth noting the
decoupling of the chronological and cardiac ages at the
level of cluster D, corresponding to 69 years. (Fig. 2B).

DISCUSSION

An accurate interpretation of the correlation between
aging and the principal components extracted from the
various sets of variables used in this paper, as depicted
in Fig. 3, is a fascinating issue, surely worthy of further
and fully dedicated efforts. In planning our work,
however, another goal was in mind, i.e., to get, from the
bulk of the available information on HRV, a systematic
and statistically sound comparison between the cardio-
vascular and the chronological age.

In such a frame, the salient clinical finding emerging
from our study is that the two patterns of chronological
and neuroautonomic aging do not completely overlap.
Although chronological aging and the age-related loss
of autonomic cardiovascular control have a similar
pattern until the sixth decade of life (12), from this age
onward the cardiovascular age begins to plateau (see
Fig. 2). Although a clear-cut and nonambiguous expla-
nation of this effect seems out of reach at the moment,
any attempt to understand it should take into account
the two following hypotheses. The first one envisages a
threshold for the functional loss in normal subjects. If
the cardiovascular function declines below this thresh-
old, which for normal subjects is presumably fixed
during the sixth decade, then the functional loss is
severe enough to induce cardiovascular disease. Indi-
viduals exceeding this limit would be either more
susceptible to cardiovascular disease or unable to sur-
vive. The second hypothesis is that healthy 70- and
80-yr-old subjects possess, maybe as a genetically deter-
mined feature, a greater control of cardiovascular
functions than do younger subjects. Thus, in our popu-

lation, given a similar dispersive effect in the two
groups, the older individuals may be biased in terms of
greater functional reserves. If so, then our .70-yr-old
population should be considered as a selected one, not
wholly comparable with the younger counterpart. It is
quite unusual, in fact, to find such a large fraction of
people over 70 yr old with no cardiovascular disease;
very probably, only a few of our subjects under the age
of 60 yr will reach the age of 70 yr without any disease.
In our opinion, in fact, any sensible choice between the
above-mentioned alternatives is unfeasible with the
kind of data presently available to us; thus, to verify in
particular the second hypothesis, a longitudinal epide-
miologic study designed to follow the age-related loss of
cardiovascular function in the very same population is
needed.

From the practical point of view, the present work
demonstrates the possibility, starting from the spectral
analysis of the HRV under the resting state and after
head-up tilting, to reckon a cardiac age potentially
useful for screening purposes. It is intuitive that,
because Eq. 1 for cardiac age refers to healthy individu-
als, it is not applicable to unhealthy subjects; to do that,
more studies are needed. From a more speculative
point of view, it is worth noting that the main compo-
nents of the HRV were, in order of decreasing impor-
tance, 1) the amount of variability, 2) the relative
importance of the nonoscillatory and oscillatory regula-
tions, and 3) the sympathetic-parasympathetic bal-
ance. Such a hierarchical ordering was found in all the
original and the derived data sets considered in the
present work and could provide the basis for a general
description of heart rate regulation.
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