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Abstract. Most investigations into heart rate dynamics 
have emphasized continuous functions, whereas the heart 
beat itself is a discrete event. We present experimental 
evidence that by considering this quality, the dynamics 
may be appreciated as a result of singular dynamics 
arising out of non-Lipschitz formalisms. Markov process 
analysis demonstrates that heart beats may then be con- 
sidered in terms of quantum-like constraints. 

1 Introduction 

Some considerable discussion has revolved around the 
correct characterization of heart beat intervals. Although 
power spectral analysis has identified several peaks relat- 
ing to autonomic control (Kitney and Rompelman 1987), 
it has also been noted that some variability modulation 
may be related to mechanical modulations of intra- 
thoracic pressure changes of breathing (Zbilut et al. 
1988). There remains much confusion regarding the very 
low frequency ranges (Sapoznikov et al. 1994). Certainly 
some of the difficulty is due to the various methods 
employed for sampling intervals, as well as the methods 
of calculating the spectrum; however, it has also been 
pointed out that some of the modulations may act non- 
linearly, and are also influenced by such factors as tidal 
volume. To avoid these contentious aspects, some inves- 
tigators have used methods from nonlinear dynamics to 
support the idea that the heart beat intervals are govern- 
ed by deterministic chaos, although this has also been 
disputed. 

Recently it has been proposed that given the need for 
some determinism, while maintaining the flexibility of 
beat-to-beat control, the dynamics can best be modeled 
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by nondeterministic equations of motion (Zbilut et al. 
1994). Such a model is in a sense piece-wise deterministic, 
but not dependent upon initial conditions. Randomness 
in such dynamics is generated by the dynamics themsel- 
ves, and not from some error functional. Furthermore, 
complex nonlinear interactions can be obtained at the 
singular points. Between singular points, the dynamics 
are then constrained in a deterministic way. The advant- 
age of this paradigm is that the organism is allowed to 
adjust the dynamics according to environmental influen- 
ces at the singular points. Preliminary evidence suggests 
that in the case of an isolated, perfused rat heart, the 
heart beat does follow a predicted random walk. The 
present study seeks to extend this paradigm by a Mar- 
kovian formalization of the non-Lipschitz dynamics, and 
suggests reformulation of ideas originally suggested by 
Gerstein and Mandelbrot (1964). 

2 Theory 

During the last several decades, biologists have expressed 
increasing interest in methods of signal processing such 
as the fast Fourier and other transforms for the eluci- 
dation of hidden periodicities of biological variables. 
Certainly, many useful and important observations 
regarding the time-varying properties of such variables 
have been demonstrated. Amidst this activity, however, 
there has been a growing realization that the algorithms 
themselves have numerous drawbacks, including ques- 
tions of noise level and stationarity, which prohibit their 
uncritical application (Grassberger et al. 1991; Eckmann 
and Ruelle 1992). Even if these drawbacks were resolved, 
a more fundamental problem lies in their application: by 
definition, chaotic systems are fully determined by initial 
conditions, and they are unpredictable only because of 
our lack of precision. Certainly, one of the main features 
of living organisms is that they are adaptive throughout 
a range of time scales. To suggest that biological dynamics 
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are fully characterized by attractors, strange or other- 
wise, would limit this adaptability (Haken 1991; Zbilut 
1991; Ruelle 1994; Webber  and Zbilut 1994; Zbilut et al. 
1994). Nowhere is this fact more evident than in the 
workings of the brain: this once static organ has now 
become appreciated as a fully dynamic, plastic, and adap- 
tive entity, with billions of interconnected cells respon- 
ding to thousands of chemical and electrical forces, and 
'noise'. By suggesting that it is in any way classically 
chaotic, would force its activity into some narrow prede- 
termined way, incapable of responding to new environ- 
mental conditions. 

It  may be argued that these objections can be 
countered by the existence of 'control parameters, '  which 
can retune the system. As yet, however, there has been no 
demonstration of how such an adaptive control appar- 
atus is realized in a biological entity. 1Furthermore, given 
the tremendous amounts of noise in biological systems, 
and the extreme sensitivity to initial conditions of chaotic 
systems, the energy expended to run adaptive controllers 
would be considerable. Certainly the stability of such 
systems would come into question, since often infinite- 
simal differences in control parameters can result in 
enormously different effects. Consider, for example, the 
implications for the conduction system of the heart, 
which must  work relatively flawlessly for decades. 

At this juncture, one is reminded of the statement by 
Einstein: 'So far as the laws of mathematics refer to 
reality, they are not certain. And so far as they are 
certain, they do not refer to reality' (Einstein 1983). In- 
deed, one of the main problems of chaos theory with 
respect to biological systems is its lack of ability to 
explain the singular points of physiological processes 
where repetitive, stereotypical (orbital) behavior is en- 
countered. Certainly, the qualitative features of the firing 
can be well modeled, but the pauses between events 
cannot. Even the use of stochastic differential equations 
encounters considerable difficulty, especially when their 
time dependence is considered. This is not even to con- 
sider the separate issue of noise characterization: do 
biological organisms harbor  different kinds of noise gen- 
erators? All these points suggest that nonlinear chaotic 
dynamics fail to describe many  biological systems in one 
of their most  important  points, namely adaptability. 

In response, we would suggest that a main difficulty 
is not the nonlinear dynamics per se, but in one of the 
t ime-honored conditions for differential equations. 
Specifically, we point out that uniqueness criteria are 
required for the solution of differential equations 
(Coddington and Levinson 1955; Arnold 1989). In fact 
there is no absolute need to require such conditions. 
Certainly, uniqueness makes matters convenient from 

1 The focus here is on the fact that traditionally, feedback mechanisms 
have been employed to help explain normal physiological control. It 
has even been pointed out, however, that many of the so-called negative 
feedback systems do not exist when subjected to experimental verifica- 
tion (Somjen 1992) 
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Fig. 1. Random walk in time (b) generated by non-Lipschitz singular- 
ities with equiprobable trajectories (a) 

a mathematical standpoint, but it might be counter- 
productive to biology. 2 

One way to demonstrate uniqueness is to require 
Lipschitz conditions (boundedness of derivatives). If  this 
requirement is relaxed, the dynamics become not only 
more 'adaptable, '  but also more tractable with respect 
to noise without specifically requiring random terms. 
Consider, for example, a simple equation without 
uniqueness. 3 For  the equation (Fig. 1) 

= x1/3cosfot  (1) 

at the singular solution, x = 0 (which is unstable, for 
instance, at t = 0), a small noise drives the motion to the 
regular solutions, _ (2/3c0 sint) 3/2, with equal probabil- 
ities. Then the function )~ = x describes a random walk in 
one dimension. Although the present example demon- 
strates a random walk, it has been shown that any prob- 
ability distribution can exist (Zak 1993). It  is important  
to emphasize, however, the fundamental difference be- 
tween the probabilistic properties of these non-Lipschitz 
dynamics and those of traditional stochastic or differen- 
tial equations: the randomness of stochastic differential 

2 We note here the subject of phase resetting experiments, and osten- 
sibly discontinuous dynamics, which have produced a long tradition of 
important research (Winfree 1990). In the present case we are not 
specifically dealing with such external perturbations; nonetheless, we do 
see a possible role insofar as a persistent problem with phase resetting is 
the fact that the dynamics consistently must deal with theoretically 
infinite time limits. Additionally, non-Lipschitz dynamics can allow for 
greater flexibility and a richer dynamics than deterministic limit cycles 
through the exploitation of stochastic attractors. Finally, the energy for 
the motion in non-Lipschitz dynamics comes from an instability, 
whereas the perturbations in phase resetting experiments are consider- 
ably larger external perturbations (see, e.g., Zak 1994, p. 1151, eq. 170) 
3 Existence and uniqueness theorems are mathematical formalisms, and 
do not necessarily follow from physical reality. The term 'determinism,' 
and its mathematical and physical representations, came after Newton, 
and often revolved around philosophical or theological concepts. We 
further emphasize that other physiological phenomena may indeed be 
best modeled by deterministic chaos. For some perspectives on the 
evolution of the understanding of determinism see, e.g., Cohen (1971), 
Earman (1986), Lenzen (1954) and Yates (1993) 



equations is caused by random initial conditions, ran- 
dom force or random coefficients; in chaotic equations 
small (but finite) random changes of initial conditions are 
amplified by a mechanism of instability. But in both cases 
the differential operator itself remains deterministic. In 
contradistinction to that, in nondeterministic dynamics, 
randomness results from the violation of the uniqueness 
of the solution at equilibrium points, and therefore, the 
differential operator itself generates random solutions (Zak 
1993). Furthermore, the singular point can be part of 
a larger chain of oscillators which become self-organiz- 
ing. Interestingly enough, when such dynamics are ana- 
lyzed numerically for Lyapunov exponents, positive 
values are obtained, which is not surprising since the 
solutions are characterized by an infinite divergence 
(Zak 1994). Real-world examples of such dynamics in- 
clude whip cracking (Zak 1970), seismic waves (Zak 
1983), ball motion (Stelzel et al. 1988), and double pendu- 
lums (Hiibler 1992). 

3 Methods 

Plausibility of such dynamics in biological preparations 
is difficult due to the large amounts of noise which are 
amplified and filtered along with the signals of interest 
(e.g., in electrocardiography). The trajectories arrive at 
singular points in finite time, and as a result, the second 
derivative diverges (Zbilut et al. 1994). This diver- 
gence, which is a delta function in simulated data, appears 
as a smooth function because of signal conditioning; how- 
ever, indirect evidence might be obtained by studying the 
probabilistic structure of such signals. Under the assump- 
tion that heart beats are punctuated by singular points, 
governed by nondeterministic equations, we sought to 
determine whether Markov analysis would provide new 
information regarding their characterizations. 

3.1 Preparatory operative procedures 

Animals [6-month-old (n = 6) and 24-month-old (n = 18) 
Fischer 344 rats from Charles River Breeding Laborator- 
ies (Calco, Como)-I were anesthetized (Nembutal Na, 30 
mg/kg intraperitoneally) and settled on a small surgery 
table. Two 1-cm-long skin incisions were made over the 
anterior and posterior ends of the sternum and two ring 
electrodes were soldered to 20-cm-long insulated wires 
(outer diameter 1 mm), which were then tied to subcu- 
taneous tissue by means of a silk suture. A third incision 
was performed over the skull and the free tips of the wires 
were passed subcutaneously to the skull, cut to suitable 
lengths, and soldered with two male contact pins. Pins 
were fixed to the skull by dental cement, and the incisions 
closed with sutures. The animals were housed in indi- 
vidual cages, and after 2 days the rats had fully recovered 
from the operation. 

3.2 Electrocardiographic recording 

Starting from day 2, the rats were connected to the 
electrocardiograph (Hewlett Packard model 1188D) by 
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means of two wires about 60 cm in length, and soldered 
to female pins. This habituation period lasted a week; 
thereafter the electrocardiogram (ECG) was recorded for 
10 min after about 30 min of animal stabilization. ECG 
recording and analysis were performed by a computer 
(Hewlett Packard, Vectra 386/16N) using an analog- 
digital interface (TL-1 DMA Interface, Axon Instru- 
ments). R-R intervals were timed using pClamp software 
(Axon Instruments). 

4 Analysis 

The analysis presented is relative to the baseline ECG 
recordings of two young rats (GIO4 and GIO6), and is 
consistent with the results from the other animals. The 
original series was embedded 15 times, and the resulting 
multivariate matrix was analyzed by a principal compo- 
nents analysis (PCA) on the relative correlation matrix. 
This procedure is very effective for singling out the main 
order parameter organizing the temporal variability of 
the numerical series (Ghil and Vautard 1991; Vautard 
et al. 1992). The choice of analyzing the first component 
instead of the original series derived from the need to deal 
with a clearer signal with respect to the original series, 
and to maintain the high-dimensional information linked 
to the embedding. 

The baseline tracings highlighted a very strong 
'leading' first principal component explaining from 60% 
to 95% of total variance, the only exception being a rat 
with a high number of spontaneous arrhythmias, in 
which 37% of the variance was explained by the first 
principal component (PRIN1). The distribution of vari- 
ance explained by different components for a typical 
tracing is given in Table 1. 4 

The two recordings were both characterized by an 
extremely high value of variability explained by the first 
component (85 %). The goal of the present analysis was to 
characterize the dynamics along the first component 
(PRIN1) in terms of a Markovian process in order to 
demonstrate the possibility of a probabilistic character- 
ization of the dynamics. By the Markov formalism (Feller 
1968) the dynamical system is described via its transition 
matrix (TM), representing the conditional probabilities 
of going from a certain state i at time t to another statej  
(which could even be identical to i) at time t + 1. A pre- 
requisite for the application of this analysis is the possibility 
of describing the dynamics by means of discrete states as 
well as of subdividing time into discrete steps. While the 
second feature is inherent in the discrete character of the 

4 We have also performed similar preliminary analysis on isolated 
perfused rat hearts, as well as on humans. The isolated perfused rat 
heart has a first component explaining approximately 50% of the 
variance, and follows a constrained random walk. In this we point out 
that deep Nembutal anesthesia probably affects local cellular mecha- 
nisms, and thus confounds simplistic statements regarding autonomic 
control. Seventeen healthy human volunteers (ages 25-52 years) as well 
as 7 cardiomyopathic and 2 heart transplant individuals were also 
studied. They all had the same dynamical behavior for the non-oscillat- 
ing component as described 
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Table 1. Percentage of explained R-R variability (adult rat in 
basal conditions) 

PRIN1 85.3 PRIN5 1.1 
PRIN2 2.1 PRIN6 0.7 
PRIN3 2.0 PRIN7 0.6 
PRIN4 1.3 

The major part of variability is explained by PRIN 1. The minor 
components are sin/cosin associated pairs with an approxim- 
ately equal variability. PRIN1 does not oscillate in the studied 
range 

R-R time series, the validity of the first prerequisite was 
checked by the high percentage of explained variability of 
a cluster analysis of the studied time series. 

The cluster analysis technique (Everitt 1980) used was 
the k-means algorithm: the methodology aims to con- 
struct classes (clusters) that are as compact as possible 
(minimum intra-cluster variability), while at the same 
time maintaining the clusters themselves as separate as 
possible (maximum inter-cluster variability). The k- 
means algorithm is a non-hierarchical technique. Unlike 
the situation with hierarchical methods, the number k of 
classes into which the data set is divided are decided in 
advance. In order to decide the partition endowed with 
the maximum explanatory power with respect to the 
investigated data set, use is made of the proportion of 
explained variability (R-square) relative to the different 
choices of number of classes. The explained variability of 
the particular partition is calculated as the ratio between 
the variance relative to the data set in which the actual 
values of each different unit are expressed in terms of the 
correspondent cluster mean values and the total variance 
of the original data set. By increasing the number of 
classes, the explained variance is increased. This proced- 
ure is terminated when a plateau of explained variance is 
reached. 

Clustering techniques are well suited to the need for 
objectively organizing time series data (Shaw and King 
et al. 1992). In fact, the clusters, in the case of a trajectory, 
simply indicate particular areas of the state space: this 
partition of the state space is not arbitrary and corres- 
ponds to the criteria of structural optimality described 
above (maximal internal compactness, maximal separ- 
ation between classes). Such an analysis of a numerical 
time series results in the related discrete-states dynamics 
in which each original value of the time series is replaced 
by the name of the correspondent cluster which can be 
considered a discrete state of the dynamics. The percent- 
age of explained variance allows for the estimation of the 
proportion of original information retained after this 
transformation. 

The filtered series (PRIN1) was submitted to this 
cluster analysis, and resulted in tracings with a very 
clear-cut structure, composed of six clusters explaining 
almost all the variability. The clusters can be made 
to correspond to discrete states of the dynamics 
(Tables 2, 3). The general mean of the time series is 0.0 
with a standard deviation of 1. As expected, the structure 
is of normal type with the most frequent classes posi- 
tioned near the general mean. The time series represented 

Table 2. GIO4: cluster profile 

Raw Observed Mean SD 
frequency probability 

A 467 0.2351 0.11 0.21 
B 469 0.2361 0.80 0.20 
C 494 0.2487 - 0.65 0.19 
D 205 0.1032 - 1.42 0.24 
E 262 0.1319 1.44 0.14 
F 89 0.0448 - 2.19 0.18 

Proportion of variability explained by the clustering = 0.96 

Table 3. GIO6: cluster profile 

Raw Observed Mean SD 
frequency probability 

A 195 0.0982 1.05 0.13 
B 46 0.0232 - 3.06 0.18 
C 562 0.2830 - 0.18 0.28 
D 84 0.0423 - 2.51 0.24 
E 177 0.0891 - 1.51 0.32 
F 922 0.4642 0.56 0.18 

Proportion of variability explained by the clustering = 0.95 

by the subsequent states (clusters) was then analyzed in 
terms of transition probabilities (Markov chains). The 
rows (i) of the TM represent the conditional probability 
of going from state i to state j (column) in a single step. 
The matrices correspond to a phase space diagram hav- 
ing as rows the Xt values and as columns the Xt+ 1 values, 
while the TMij elements correspond to the observed 
conditional probabilities P(j Ii) at subsequent time steps. 

The TM formalism is very straightforward, because it 
permits an immediate look at the fundamental character- 
istics of the studied dynamics: if the previous history of 
the studied phenomenon has no effect on the actual 
behavior, then the columns of the TM correspond to the 
general probability of the correspondent state, and the 
rows of the TM simply reproduce the probability distri- 
bution over the states. This kind of behavior is termed 
a random walk. Conversely, if there is a marked de- 
parture from this purely random behavior, it can be 
speculated that there exists some form of control (De- 
lcour 1993). The TMs for the two rats GIO4 and GIO6 
are reported in Tables 4 and 5. 

It is important to note that the matrix is completely 
different from a matrix governing a 'no-memory'  process 
with independent states in which the conditional prob- 
abilities are simply the raw probabilities of the corres- 
ponding states. Here the control (autonomic system?) 
acts to constrain the system in the last visited state, 
whatever the general probability of the state itself. This 
feature is evident from the very high values (near to unity) 
of the main diagonal of the TM, even for states with 
a very low general probability such as cluster F for GIO4 
and cluster B for GIO6. The observed distribution is 
different from a random-walk (P < 0.00001, chi-square 
statistic). 

Another important point is that the transitions be- 
tween different states can take place only between adjacent 



Table 4. GIO4: transition matrix between clusters (states) 

A B C D E F 

A 0.9486 0 . 0 2 7 8  0.02355 0 0 
B 0.0298 0.9488 0 0 0.02132 
C 0.0202 0 0.9656 0.01417 0 
D 0 0 0.02927 0.95129 0 
E 0 0.4198 0 0 0.95801 
F 0 0 0 0.0337 0 

Table 8. Normal: cluster profile 

Raw Normalized Mean SD 
frequency frequency 

Table 5. GIO6: transition matrix between clusters (states) 

A B C D E F 

A 0.9538 0 0 0 0 
B 0 0.9565 0 0.043 0 
C 0 0 0.9555 0 0.0089 
D 0 0.024 0 0.964 0.012 
E 0 0 0.028 0.0056 0.9661 
F 0.0152 0 0.0217 0 0 

0 
0 A 34 0.0171 - 2.52 0.24 
0 B 183 0.0921 1.69 0.30 
0.0146 C 811 0.4083 - 0.39 0.32 
0 D 10 0.0050 2.85 0.31 
0.966 E 282 0.1420 - 1.49 0.32 

F 666 0.3353 0.62 0.32 

Table 6. GIO4: distance matrix between clusters (states) 

A B C D E F 

A 0.0 0.69 0.76 1.54 1.33 2.29 
B 0.0 1.448 2.22 0.64 2.98 
C 0.0 0.78 2.08 1.54 
D 0.0 2.86 0.76 
E 0.0 3.62 
F 0.0 

Table 7. GIO6: distance matrix between clusters (states) 

A B C D E F 

A 0.0 4.11 1.23 3.56 2.56 0.49 
B 0.0 2.88 0.55 1.55 3.62 
C 0.0 2.33 1.69 0.735 
D 0.0 1.01 3.066 
E 0.0 2.07 
F 0.0 

0.071 
0 
0.034 
0 
0 
0.963 

states. This last feature can be appreciated by the inspec- 
t ion of the distance matrices between the states (on the 
basis of their m e a n  value reported in Tables 2 and  3) 
(Tables 6, 7). Obvious ly  the impossibil i ty of a t rans i t ion  
between non-ad jacen t  states has to be in tended in prob- 
abilistic terms, in the sense that  the series of 1986 points  
are no t  sufficient to exclude rare transi t ions.  

If these results are compared  with the dynamics  
cor responding  (Tables 8-10) to a normal  dis t r ibut ion 
( random walk) with a m e a n  of 0 and  s tandard  deviat ion 
of 1, the differences are evident. In  the case of a normal  
d i s t r ibu t ion  (no phasic informat ion,  no memory,  no ac- 
tive control),  the co lumns  of the T M  correspond 
(stochastically) to the general probabil i t ies  of the corres- 
pond ing  states, giving rise to a very different picture with 
respect to the T M s  relative to the physiological series. 
The  t rans i t ion  between states, in the case of the r a n d o m  
walk, is ruled only by the relative probabil i t ies with no 
adjacency constraints .  
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Proportion of variability explained by the clustering = 0.90 

Table 9. Normal: transition matrix between clusters (states) 

A B C D E F 

A 0.029 0.088 0.4705 0 0.20 0.20 
B 0.016 0.093 0.4208 0.005 0.131 0.33 
C 0.020 0.090 0 .3925 0.005 0.154 0.339 
D 0 0.200 0.400 0.100 0 0.30 
E 0.020 0.063 0.411 0 .0035 0.135 0.365 
F 0.012 0.104 0.420 0 .0045 0.132 0.326 

Table 10. Normal: distance matrix between clusters (states) 

A B C D E F 

A 0.0 4.21 2.13 5.38 1.03 3.14 
B 0.0 2.08 1.17 3.18 1.07 
C 0.0 3.25 1.10 1.01 
D 0.0 4.35 2.34 
E 0.0 2.11 
F 0.0 

Table 11. Anesthesia: cluster profile 

Raw Normalized Mean SD 
frequency frequency 

A 1154 0.655 159 0 
B 299 0.172 156 0 
C 283 0.163 162 0 

Proportion of variability explained = 1.00 

To decide whether the par t icular  character  of the 
observed physiological t ime series was due to the auto-  
nomic  control  or was a basic characteristic of cardiac 
rhythm independen t  of the control ,  we applied the same 
analysis to the R-R tracing of an anesthetized rat. If the 
hypothesis of identifying the control ler  with the auto-  
nomic  system is true, r andom-wa lk  dynamics  should be 
obta ined  in the case of anesthetized rats. 

The cluster analysis applied on the R-R of the anes- 
thetized rat  gave rise to an exact d i s t r ibu t ion  into three 
classes explaining all the var iance of the data  set 
(Table 11). The units  in this case are the length, in mil- 
liseconds, of the R-R intervals. Clusters B and  C are at 
the same distance (3.00) from the ma in  cluster (A) at the 
opposite sides of the d is t r ibut ion  (distance between B and  
C = 6.00). The T M  relative to this s i tua t ion  is reported in 
Table  12 and, as expected, is a r a n d o m  walk. F r o m  the 
analysis emerges a picture of au tonomic  control  as 
cons t ra in ing  the probabil is t ic  f luctuat ions of the R-R 
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Table 12. Anesthesia: transition matrix 

A B C 

A 0.647 0.220 0.132 
B 0.649 0.084 0.267 
C 0.749 0.071 0.180 

Table 13. Small-scale dynamics (inside cluster C of GIO6): cluster 
profile 

Raw Normalized Mean SD 
frequency frequency 

A 210 0.373 0.091 0.055 
B 120 0.213 - 0.483 0.082 
C 52 0.092 0.725 0.065 
D 180 0.320 - 0.128 0.082 

General mean and (SD) = 0.18 (0.28) 
Proportion of variability explained = 0.94 

Table 14. Transition matrix 

A B C D 

A 0.89 0.0 0.0 0.11 
B 0.0 0.87 0.06 0.07 
C 0.0 0.15 0.85 0.0 
D 0.11 0.05 0.0 0.84 

intervals around the last achieved state (a quantum-like 
scenario). The control does not try to level the system to 
the most  probable (ground) state; rather, it only con- 
strains the size of oscillations. When the system (prob- 
abilistically) escapes the constraint of one state, it is 
adjusted to the new state reached. When the autonomic 
control is off(anesthesia) the R-R dynamics can be repre- 
sented by a simple random walk between states. At this 
point, the clinical and physiological implications could 
be very important:  the philosophy of trying to constraint 
the system to only one ground state could be misleading 
and the implications of the multiplicity of 'quasi-stable' 
states have to be taken into account. 

A particularly important  question because of its rela- 
tion to the potential multiplicity of time scales relevant 
for the autonomic control is the behavior inside a single 
cluster of the time series. With respect to this point, when 
submitted to a Markov  analysis, the dynamics inside 
a particular cluster (cluster C of GIO6), the observed 
behavior is completely superimposable on the large-scale 
dynamics. Cluster C was studied as the larger time series: 
the first step was to perform a cluster analysis on the data 
set represented by the points pertaining to cluster C 
(Table 13), then the units of C of the GIO6  dynamics were 
eliminated at the boundaries with other clusters in order 
to deal only with true 'inside C '  dynamics. On this 
restricted basis (537 points out of 562), the TM was 
extracted (Table 14). In this case too, the control tries to 
maintain the system on the last visited state and the 
jumps are observable only between adjacent states. The 
analysis inside cluster F of G I O 6  gives the same results. 

The obvious implication is the one frequently mentioned 
in the literature, namely scale-invariance (fractal). 

5 Discussion 

Although a majority of the literature regarding heart rate 
variability has centered around modulating frequencies, 
relatively little research has dealt with the intrinsic beat- 
ing mechanisms devoid of external influences. Recently, 
Wilders (1993) has extended this research and has con- 
cluded that individual and cell clusters beat stochasti- 
cally (Wilders and Jongsma 1993). This has not fully 
resolved the question of coupling to the atrium, but the 
present research suggests that a random walk paradigm 
may be appropriate. This model is consistent with non- 
deterministic dynamics and, moreover,  allows for a 
convenient resolution of the need to be adaptable on 
a beat-to-beat basis. Continuous, deterministic models 
fail adequately to account for this need. Specifically, it is 
noted that inspection of ECGs reveals pauses of varying 
length which account for beat-to-beat variability; these 
are not explained by continuous models which include 
modulations. Although power spectra have been tradi- 
tionally employed to demonstrate modulating frequen- 
cies, it must be remembered that clear, sharp spectral 
peaks are rare, and represent time averages. Indeed, time- 
frequency spectra clearly reveal this fact. 

Nondeterministic dynamics may be a preliminary 
solution to this difficulty. This framework can deal with 
the singular, discrete event dynamics as well as the 
physiological requirements of adaptability to environ- 
mental influences. Additionally, the Markov  analysis of 
these dynamics provides more detail to the apparent  
fractal (scale invariant) structure, and also underscores 
the importance of noise in biological systems (Wiesenfeld 
and Moss 1995). Changes in the 'states' of the dynamics 
may provide the basis of a quantum-like formalism for 
the analysis of pathological circumstances. 
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